Evolution of groups at high risk of death from Covid-19 using hospital data

Pierre-Yves Boëlle¹, **Felix Cheysson**², Olivier Lopez², Maud Thomas²

¹ Institut Pierre-Louis d'Epidémiologie et de Santé Publique ² Sorbonne Université, LPSM

> Séminaire MIA Paris December 6th 2021

Motivation

2 Comparing CART trees

- Bootstrap based hypothesis test
- Numerical experiments

3 Some theoretical insight

- U-statistics
- Some results

Covid-19 death rates during first wave, lle-de-France

SI-VIC database, AP-HP hospitals.

Covid-19 Dataset from SI-VIC database: all hospitalisation for Covid-19 patients in AP-HP hospitals.

dt.first	dt.last	outcome	sex	age	hospital
2020-03-17	2020-04-05	rad	F	45	Robert Debré
2020-03-14	2020-03-25	rad	F	29	Robert Debré
2020-03-18	2020-03-29	dc	Н	80	St Antoine
2020-03-11	2020-03-15	dc	Н	62	St Louis
2020-03-04	2020-03-09	dc	F	72	Pitié Salpétrière
2020-03-16	2020-03-20	dc	Н	92	Raymond Poincaré

- Motivation: We wish to model the risk of death of a patient hospitalised for Covid-19 with respect to covariates.
- **Objective**: Adapt care of patients when changes in the vulnerability of groups at risks are detected.

Nadaraya-Watson estimator, corrected for censure

Estimating groups at risk using classification trees

- Classification and Regression Trees (Breiman et al., 1984)
- Build one classification tree per week.
- Study the evolution of mortality in groups at risk.

Classification and Regression Trees (CART)

Introduced by Breiman et al., 1984.

- Construct binary tree by recursively splitting the sample space \mathcal{X} along one of the covariate dimensions:
 - Find the node A, the dimension d and the value z such that the split (A, d, z)maximises the decrease in impurity:

 $\Delta i(A, d, z) = i(A) - p_L i(A_L) - p_B i(A_B);$

- Label the node through majority vote;
- Stop when a stopping rule is achieved.
- Prune the tree to reduce overfitting. Extensions include randomised ensembles: random forests, bagging, etc.

Classification and Regression Trees (CART)

Introduced by Breiman et al., 1984.

- Construct binary tree by recursively splitting the sample space \mathcal{X} along one of the covariate dimensions:
 - Find the node A, the dimension d and the value z such that the split (A, d, z)maximises the decrease in impurity:

 $\Delta i(A, d, z) = i(A) - p_L i(A_L) - p_B i(A_B);$

- Label the node through majority vote;
- Stop when a stopping rule is achieved.
- Prune the tree to reduce overfitting. Extensions include randomised ensembles: random forests, bagging, etc.

Classification and Regression Trees (CART)

Introduced by Breiman et al., 1984.

- Construct binary tree by recursively splitting the sample space \mathcal{X} along one of the covariate dimensions:
 - Find the node A, the dimension d and the value z such that the split (A, d, z)maximises the decrease in impurity:

 $\Delta i(A, d, z) = i(A) - p_L i(A_L) - p_R i(A_R);$

- Label the node through majority vote;
- Stop when a stopping rule is achieved.
- Prune the tree to reduce overfitting. Extensions include randomised ensembles: random forests, bagging, etc.

- Interpretable, handles missing data.
- Not widely used in epidemiology (Wolfson and Venkatasubramaniam, 2018).
- Theoretical properties:
 - Breiman et al., 1984: Consistency of tree structured regression and classification:

$$\lim_{n \to \infty} \mathbb{E}[p_{T_n}(\mathbf{X}) - p(\mathbf{X})]^2 = 0.$$

though not pointwise.

- Gey and Nedelec, 2005; Gey, 2012: Non asymptotic risk for pruned procedure.
- Ensemble methods often preferred (Scornet, Biau, and Vert, 2015; Biau and Scornet, 2016; Lopes, Wu, and Lee, 2020)

CART and learning set

Problem: CART are sensitive to perturbations in the learning set.

- Study predictions rather than structure of the tree: what is the variance associated with the sampling of the learning set?
- Bar-Hen, Gey, and Poggi, 2015: influence functions derived from robust estimation theory.
- Wager, Hastie, and Efron, 2014: variance of bagged predictors.

Hypothesis test for the comparison of trees

• Learning set $\mathcal{D}_n = \{(\mathbf{X}_i, Y_i)\}_{i=1}^n$, where $Y_i \in \{0, 1\}$ and $\mathbf{X}_i = (X_i^1, \dots, X_i^p) \in \mathcal{X}$.

• Tree
$$T_n = T(\mathcal{D}_n)$$
 generated by CART.

- Predicted probability $p_{T_n}(\mathbf{x})$ of $\mathbb{E}[Y|\mathbf{X} = \mathbf{x}]$ for the tree T_n .
- Hypothesis test for the comparison of two trees T_n and T'_m with respect to a d.f. F defined on a subset $B \subseteq \mathcal{X}$ of the input space:
 - Null hypothesis \mathcal{H}_0 : $\forall \mathbf{x} \in B, \ p_{T_n}(\mathbf{x}) = p_{T'_m}(\mathbf{x}).$

Hypothesis test for the comparison of trees

• Learning set $\mathcal{D}_n = \{(\mathbf{X}_i, Y_i)\}_{i=1}^n$, where $Y_i \in \{0, 1\}$ and $\mathbf{X}_i = (X_i^1, \dots, X_i^p) \in \mathcal{X}$.

• Tree
$$T_n = T(\mathcal{D}_n)$$
 generated by CART.

- Predicted probability $p_{T_n}(\mathbf{x})$ of $\mathbb{E}[Y|\mathbf{X}=\mathbf{x}]$ for the tree T_n .
- Hypothesis test for the comparison of two trees T_n and T'_m with respect to a d.f. F defined on a subset $B \subseteq \mathcal{X}$ of the input space:
 - Null hypothesis \mathcal{H}_0 : $\forall \mathbf{x} \in B, \ p_{T_n}(\mathbf{x}) = p_{T'_m}(\mathbf{x})$.
 - Test statistic:

$$I(T_n, T'_m, F) = \int d(p_{T_n}(\mathbf{x}), p_{T'_m}(\mathbf{x})) \mathrm{d}F(\mathbf{x}),$$

where d(p,q) is one of $(p-q)^2, \, |p-q|, \text{ or } -p\log q - q\log p,$ or

$$I(T_n, T'_m, F) = \sup_{\mathbf{x} \in B} |p_{T_n}(\mathbf{x}) - p_{T'_m}(\mathbf{x})|.$$

• Question: What is the d.f. of $I(T_n, T'_m, F)$?

Idea: Generate a bootstrap approximation of the d.f. of $I(T_n, T'_m, F)$ under \mathcal{H}_0 :

• Build "average tree" \bar{T} under the null:

$$\bar{p}(\mathbf{x}) = \frac{n}{n+m} p_{T_n}(\mathbf{x}) + \frac{m}{n+m} p_{T'_m}(\mathbf{x});$$

- Generate bootstrapped trees T_n^* and $T_m^{\prime*}$, where probabilities for Y_i^* are given by $\bar{T};$
 - Sample with replacement n inputs from \mathcal{D}_n : $\mathbf{X}_1^*, \ldots, \mathbf{X}_n^*$;
 - For each \mathbf{X}_i^* , draw $Y_i^* \sim B(p(\mathbf{X}_i^*; \mathcal{D}_n));$
 - Build the tree T_n^* on $\mathcal{D}_n^* = \{(\mathbf{X}_i^*, Y_i^*)\}_{i=1}^n$, using the same control parameters as the original tree.
- Compare $I(T_n,T_m',F)$ to $I(T_n^*,T_m'^*,F)$ to determine a unilateral p-value.

Felix Cheysson

-12-06 12/26

Numerical experiments

<u>Generative model \mathcal{M} for both \mathcal{D}_n and \mathcal{D}'_m :</u>

- Continuous variable (age): $X_1 = p_e X_e + (1 - p_e) X_y$, where $X_e \sim \mathcal{N}(\mu_e, \sigma_e)$ and $X_y \sim \mathcal{N}(\mu_y, \sigma_y)$;
- Discrete variable (gender): $X_2 \sim B(p_f)$;
- Binary outcome (death): $Y \mid X_1, X_2 \sim B(p_d)$,

$$\operatorname{logit}(p_d) = \beta_0 + \beta_1 X_1 + \beta_2 X_2.$$

Scenarii, n = m = 1,000:

 \mathcal{H}_0 Testing d.f. are (\mathbf{X}_i) from \mathcal{D}_n ;

 \mathcal{H}_0' Testing d.f. is generated from $\mathcal M$ with $p_e=1$;

$$\mathcal{S}_1$$
 As for \mathcal{S}_0' , with $\beta_1 = 0.06;$

$$\mathcal{S}_2$$
 As for \mathcal{S}_0' , with $\beta_2 = 0.7$.

Value
75
12
50
15
0.6
0.5
-5
0.05
0.35

p-values for 100 simulations under \mathcal{H}_0

Felix Cheysson

Evolution of Covid-19 death rates

p-values for 100 simulations under \mathcal{H}_0' , for

Felix Cheysson

p-values for 100 simulations for scenarii \mathcal{S}_1 and \mathcal{S}_2

Felix Cheysson

Evolution of Covid-19 death rates

Applications to death rates during first wave

Felix Cheysson

Evolution of Covid-19 death rates

Comparing death rates for the first three waves

- Data from AP-HP's EDS (*Entrepôt de Santé*), covering 39 hospitals.
- Pandemic waves occurring:
 - From mid-March to end of June 2020;
 - From early-Sept. to end of Nov. 2020;
 - From early-Feb. to end of May 2021.

	Healthy < 50 y.o.		Elderly	> 60 y.o.
	Rate	p-value	Rate	p-value
1 st wave	0.029	_	0.214	
2 nd wave	0.019	0.34	0.184	< 0.01
3 rd wave	0.015	0.61	0.216	0.03

Motivation: Is the bootstrap approximation valid? Our first approach: Using von Mises calculus (Fernholz, 1983).

- Let \mathbb{P}_n and \mathbb{P}'_m denote the empirical d.f. of $\{(\mathbf{X}_i, Y_i)\}_{i=1}^n$ and $\{(\mathbf{X}'_j, Y'_j)\}_{j=1}^m$, and \mathbb{P} and \mathbb{P}' their true d.f.
- If $I(T_n,T'_m,F)=I(\mathbb{P}_n,\mathbb{P}'_m)$ can be shown to be Hadamard-differentiable at \mathbb{P} and \mathbb{P}' , then
 - $I(T_n, T'_m, F)$ is asymptotically normal;
 - $\bullet~I(T^*_n,T'^*_m,F)$ converges in distribution to the same limit.
- \bullet Problem: differentiability of the split point (A,d,z) at $\mathbb P$ cannot be shown to hold for CART trees.
- **Second attempt**: Using distributional results on ensemble methods (Wager, 2014; Mentch and Hooker, 2016; Lopes, Wu, and Lee, 2020).

- Introduced by Halmos, 1946 and Hoeffding, 1948.
- Generalisation of the mean to sum of dependent variables.
- Suppose we are interested in the expected value of a kernel h which is permutation symmetric in its r arguments:

$$\theta = \mathbb{E}h(X_1, \ldots, X_r).$$

• For an *i.i.d.* sample (X_1, \ldots, X_n) , define the *U-statistic with kernel* h:

$$U_n = \binom{n}{r}^{-1} \sum_{(n,r)} h(X_{i_1},\ldots,X_{i_r}).$$

• Examples of U-statistics: sample mean and variance, signed rank statistic, Mann-Whitney statistic ($\mathbb{P}(X < Y)$), ...

A gentle reminder on U-statistics (cont'd)

By projecting U_n on the space \mathcal{S}_1 (Hájek projection),

$$\mathcal{S}_1 = \left\{ \sum_{i=1}^n g_i(X_i) : \mathbb{E}g_i^2(X_i) < \infty \right\},\,$$

it can be shown that:

Theorem

If $\mathbb{E}h^2(X_1,\ldots,X_r)<\infty$, then

$$\sqrt{n}(U_n - \theta) \xrightarrow[n \to \infty]{d} \mathcal{N}(0, r^2 \zeta_1),$$

where

$$\begin{aligned} \zeta_1 &= \operatorname{Var} \big(\mathbb{E}[h(X_1, X_2, \dots, X_r) \mid X_1] - \theta \big) \\ &= \mathbb{E} \big[h(X_1, X_2, \dots, X_r) h(X_1, X'_2, \dots, X'_r) \big] - \theta^2. \end{aligned}$$

Felix Cheysson

Evolution of Covid-19 death rates

U-statistics for CART

- Mentch and Hooker, 2016; Peng, Coleman, and Mentch, 2019:
 - Base learners $T(\mathbf{X}_1,\ldots,\mathbf{X}_r)$ trained on subsamples of size r.
 - $\bullet\,$ Bagging predictions at \mathbf{x}^* from this ensemble method yields

$$U_{n,k}(\mathbf{x}^*) = \binom{n}{k}^{-1} \sum_{(n,k)} T_{\mathbf{x}^*}(\mathbf{X}_{i_1},\ldots,\mathbf{X}_{i_r}).$$

• Extension to Incomplete Infinite Order U-Statistics:

$$U_{n,r_n,N}(\mathbf{x}^*) = \frac{1}{N} \sum_{(i)} T_{\mathbf{x}^*}(\mathbf{X}_{i_1},\ldots,\mathbf{X}_{i_{r_n}}).$$

• Mayer, 2009: U-quantile-statistic = sample p-th quantile of the set

$$\big\{h(X_1,\ldots,X_r:1\leq i_1\leq\ldots\leq i_r\leq n\big\}.$$

Idea: Under the null, find the asymptotic properties of the $(1 - \alpha)$ -th quantile of the test statistic $I(T_n, T'_m, F)$ written as an incomplete infinite order U-quantile-statistic.

U-statistic for the hypothesis test

- Consider two learning sets $\{(X_i, U_i)\}_{i=1}^m$ and $\{(Y_j, V_j)\}_{j=1}^n$.
- Define the kernel h by

$$h(X_1,\ldots,X_r;Y_1,\ldots,Y_s) = \int d\big(T_x(X_1,\ldots,X_r),T_x(Y_1,\ldots,Y_s)\big) \mathrm{d}F(x),$$

with expected value $\theta_{r,s} = \mathbb{E}h$.

Then we consider

$$U_{m,n,r,s} = \binom{m}{r}^{-1} \binom{n}{s}^{-1} \sum_{(m,r)} \sum_{(n,s)} h(X_{i_1}, \dots, X_{i_r}; Y_{j_1}, \dots, Y_{j_s}).$$

U-statistic for the hypothesis test (cont'd)

Define
$$\zeta_{r,s} = \operatorname{Var}(h)$$
, $\zeta_{1,0} = \operatorname{Var}(\mathbb{E}[h \mid X_1])$ and $\zeta_{0,1} = \operatorname{Var}(\mathbb{E}[h \mid Y_1])$

Proposition

Denote N=m+n. Suppose $m/N\to\lambda$, $n/N\to(1-\lambda)$, and $r/m\sim s/n\sim S/N$. Assume that $\mathbb{E}h^2<\infty$, and

$$\frac{S}{N}\frac{\zeta_{r,s}}{r\zeta_{1,0}+s\zeta_{0,1}}\to 0.$$

Then

$$\sqrt{N} \frac{U_{m,n,r,s} - \theta_{r,s}}{\sqrt{\frac{r^2}{\lambda} \zeta_{1,0} + \frac{s^2}{1-\lambda} \zeta_{0,1}}} \xrightarrow{d} \mathcal{N}(0,1).$$

Proof follows Peng, Coleman, and Mentch, 2019:

• Hoeffding decomposition: study the variance by projecting $U_{m,n,r,s}$ on the pairwise orthogonal spaces $S_{i,j}$ of square-integrable functions, of the form

$$\mathcal{S}_{i,j} = \left\{ \sum_{(m,i)} \sum_{(n,j)} g_{i,j}(X_{\alpha_1}, \dots, X_{\alpha_i}; Y_{\beta_1}, \dots, Y_{\beta_j}) \right\}.$$

- We have that $r\zeta_{1,0} \leq \zeta_{r,s}$, similarly for $\zeta_{0,1}$: r and s must be chosen such that the assumption is valid.
- Example: for the one-sample OLS estimator, $(r\zeta_1)^{-1}\zeta_s \rightarrow 1$ (Peng, Coleman, and Mentch, 2019).

Applications to more complex data from Covid-19 pandemic

- Extend methodology to include censored data.
 - Weigh observations according to the inverse of the survival function.
- Include more explanatory covariates in the learning set.
 - Biological data, comorbidities, hospital pathways, etc.
- Develop and share a R package.

Theoretical properties

• Finish proofs for incomplete U-statistics and U-quantile-statistics.

Thank you for your attention.

Bar-Hen, Avner, Servane Gey, and Jean-Michel Poggi (2015). "Influence Measures for CART Classification Trees". In: J. Classif. 32.1, pp. 21-45. ISSN: 0176-4268. DOI: 10.1007/s00357-015-9172-4. arXiv: 1610.08203. 🔋 Biau, Gérard and Erwan Scornet (2016). "A random forest guided tour". In: TEST 25.2, pp. 197-227. ISSN: 1133-0686. DOI: 10.1007/s11749-016-0481-7. arXiv: 1511.05741. 📄 Breiman, Leo et al. (1984). Classification and regression trees. The Wadsworth statistics / probability series. CRC, p. 366. ISBN: 0-412-04841-8. Courtejoie, Noémie and Claire-Lise Dubost (2020). Parcours hospitalier des patients atteints de la Covid-19 lors de la première vague de l'épidémie. Tech. rep. 67. Les dossiers de la DREES.

For Further Reading II

📔 Fernholz, Luisa Turrin (1983). von Mises Calculus for Statistical Functionals. Lecture Notes in Statistics. New York: Springer-Verlag, p. 133. ISBN: 9788578110796. arXiv: arXiv:1011.1669v3. Gey, Servane (2012). "Risk bounds for CART classifiers under a margin condition" In: Pattern Recognit. 45.9, pp. 3523–3534. ISSN: 00313203. DOI: 10.1016/j.patcog.2012.02.021. arXiv: 0902.3130. Gey, Servane and Elodie Nedelec (2005). "Model Selection for CART Regression Trees" In: IEEE Trans. Inf. Theory 51.2, pp. 658-670. ISSN: 0018-9448. DOI: 10.1109/TIT.2004.840903. 📕 Halmos, Paul R. (1946). "The Theory of Unbiased Estimation". In: Ann. Math. Stat. 17.1, pp. 34-43. ISSN: 0003-4851. DOI: 10.1214/aoms/1177731020. Hoeffding, Wassily (1948). "A Class of Statistics with Asymptotically Normal Distribution". In: Ann. Math. Stat. 19.3, pp. 293-325. ISSN: 0003-4851. DOI: 10.1214/aoms/1177730196.

- Lopes, Miles E., Suofei Wu, and Thomas C. M. Lee (2020). "Measuring the Algorithmic Convergence of Randomized Ensembles: The Regression Setting". In: SIAM J. Math. Data Sci. 2.4, pp. 921–943. DOI: 10.1137/20m1343300. arXiv: 1908.01251. 📕 Mayer, Michael (2009). "U-Quantile-Statistics". In: pp. 1–9. arXiv: 0906.1266. Mentch, Lucas and Giles Hooker (2016). "Quantifying uncertainty in random forests via confidence intervals and hypothesis tests". In: J. Mach. Learn. Res. 17, pp. 1-41. ISSN: 15337928. arXiv: 1404.6473. 📔 Peng, Wei, Tim Coleman, and Lucas Mentch (2019). "Asymptotic Distributions and Rates of Convergence for Random Forests via Generalized U-statistics". In: DOI: 10.1214/19-EJS1643. arXiv:
 - 1905.10651.

- Scornet, Erwan, Gerard Biau, and Jean Philippe Vert (2015).
 "Consistency of random forests". In: Ann. Stat. 43.4, pp. 1716–1741.
 ISSN: 00905364. DOI: 10.1214/15-A0S1321. arXiv: 1405.2881.
- Vaart, A. W. van der (2000). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University Press, p. 460.
- Wager, Stefan (2014). "Asymptotic Theory for Random Forests". In: pp. 1–17. arXiv: 1405.0352.
- Wager, Stefan, Trevor Hastie, and Bradley Efron (2014). "Confidence Intervals for Random Forests: The Jackknife and the Infinitesimal Jackknife.". In: J. Mach. Learn. Res. 15.1, pp. 1625–1651. ISSN: 1532-4435.

Parametric bootstrap $T_n^* = T(\mathcal{D}_n^*)$ of tree $T(\mathcal{D}_n)$:

- Sample with replacement n inputs from \mathcal{D}_n : $\mathbf{X}_1^*, \ldots, \mathbf{X}_n^*$;
- For each \mathbf{X}^*_i , draw $Y^*_i \sim B(p(\mathbf{X}^*_i; \mathcal{D}_n));$
- Build the tree T_n^* on $\mathcal{D}_n^* = \{(\mathbf{X}_i^*, Y_i^*)\}_{i=1}^n$, using the same control parameters as the original tree.

back

Consider a linear statistical functional $T: G \mapsto T(G) = \int \phi(x) dG(x)$ with ϕ a real-valued function. Then, for the empirical d.f. F_n of F:

$$\begin{split} \sqrt{n}(T(F_n) - T(F)) &= \sqrt{n} \left\{ \int \phi(x) \mathrm{d}F_n(x) - \int \phi(x) \mathrm{d}F(x) \right\} \\ &= \sqrt{n} \left\{ n^{-1} \sum \phi(X_i) - \mathbb{E}_F[\phi(X)] \right\} \\ &= \sqrt{n} \left\{ n^{-1} \sum \left(\phi(X_i) - \mathbb{E}_F[\phi(X)] \right) \right\} \\ &\xrightarrow{\mathsf{CLT}} \mathcal{N}\big(0, \sigma^2 = \operatorname{Var}_F \phi(X)\big). \end{split}$$

• von Mises differentiation generalises this to non-linear functionals:

$$T(F_n) = T(F) + T'_F(F_n - F) + \operatorname{Rem}(F_n - F),$$

where $T'_F(\cdot-F): G\mapsto \int \phi_F(x) \mathrm{d} G(x)$ is a linear mapping with

$$\phi_F(x) = \frac{\mathrm{d}}{\mathrm{d}t} \Big(T(F + t(\delta_x - F)) \Big) \Big|_{t=0}$$

often denoted IC(x; F, T) the *influence curve* of T at F.

- Existence of
 - the Von Mises derivative $T_F'(\cdot F)$
 - and convergence of $\sqrt{n}\operatorname{Rem}(F_n-F)$ to zero in probability,

and thus validity of the Taylor expansion, can both be ensured by the Hadamard differentiability of the functional T at F (Fernholz, 1983).

A function $T: A \in V \to W$ is Hadamard-differentiable at $F \in A$ if there exists $T'_F \in L(V, W)$ such that, for any $K \subset V$ compact,

$$\lim_{t\to 0} \frac{T(F+tH)-T(F)-T'_F(tH)}{t}=0$$

uniformly for $H \in K$. The linear function T'_F is called the Hadamard-derivative of T at F.

Robustness of CART

- Idea: quantify sensitivity through influence functions $I(\cdot)$ derived from robust estimation theory (Bar-Hen, Gey, and Poggi, 2015).
- If *I* is Hadamard-differentiable, then:

$$\begin{split} \sqrt{n}(I(F_n) - I(F)) &\simeq \sqrt{n} \int \mathrm{IC}_{I,F}(x) \mathrm{d}F_n(x) \\ &= \sqrt{n} \frac{1}{n} \sum_{i=1}^n \mathrm{IC}_{I,F}(X_i) \\ &\xrightarrow{\mathsf{TCL}} \mathcal{N}\left(0, \sigma^2 = \int \mathrm{IC}_{I,F}^2(x) \mathrm{d}F(x)\right). \end{split}$$

• Estimation via Jackknifing:

$$\operatorname{IC}_{I,F_n}(x_i) \simeq I_{n,i}^* - I(F_n) = nI(F_n) - (n-1)I(F_{n-1}^{(-i)}),$$

where $I_{n,i}^{*}$ represents the *n*-th jackknife pseudo-value.

Study theoretical properties of the test

$$\sqrt{n}(I(F_n) - I(F)) \simeq \sqrt{n} \int \mathrm{IC}_{I,F}(x) \mathrm{d}F_n(x)$$

- What is the induced functional I(T, T', F)?
 - \mathbb{L}^2 -consistency for regression trees and random forests (Scornet, Biau, and Vert, 2015):

$$\lim_{n \to \infty} \mathbb{E}[(m_{T_n}(\mathbf{X}) - m(\mathbf{X}))^2] = 0,$$

with $m(\mathbf{x}) = \mathbb{E}[Y|\mathbf{X} = \mathbf{x}]$ and $m_{T_n}(\mathbf{x})$ its prediction.

- Asymptotic properties of the bootstrap statistic $I(T_n^*,T_m^{\prime*},F)$?
 - Vaart, 2000: Conditionally on X_1, \ldots, X_n , the sequence $\sqrt{n}(\phi(F_n^*) \phi(F_n))$ converges in distribution to the same limit as $\sqrt{n}(\phi(F_n) \phi(F))$, for every Hadamard-differentiable function ϕ .