Spectral estimation of Hawkes count data in discrete time

Felix Cheysson^{1,2} Gabriel Lang¹ Laurence Watier²

¹MIA-Paris, UMR 518 AgroParisTech / INRA, Paris, France
²B2PHI, UMR 1181 Institut Pasteur / Inserm / University of Versailles St-Quentin-en-Yvelines, Versailles, France

> 7th Channel Network Conference July 10th-12th, 2019

Study the dynamics of contagious diseases with regards to explanatory variables.

Attributable fraction for contagious diseases

- Common autoregressive models cannot evaluate the repercussion of externalities on self-excitement.
- Potentially rarely occurring events.

 \rightarrow Hawkes process (Meyer, Elias, and Höhle, 2012).

The Hawkes process

- Point process
- The Hawkes process

2 Spectral representation

- The Bartlett spectrum
- The Whittle likelihood

The Hawkes process

- Point process
- The Hawkes process

2 Spectral representation

- The Bartlett spectrum
- The Whittle likelihood

Definition: Point process X on \mathbb{R}

Random point pattern on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$:

$$X : (\Omega, \mathcal{A}, \mathbb{P}) \to (\mathbb{N}_{\mathbb{R}}, \mathcal{N}_{\mathbb{R}})$$
$$\omega \mapsto N_X = \{t_i\}$$

where $N_{\mathbb{R}}$ is the set of locally finite subset of $\mathbb{R}.$

Definition: Point process X on \mathbb{R}

Measurable map $N = N_X$:

$$N: (\Omega, \mathcal{A}, \mathbb{P}) \to (\mathbb{N}, \mathcal{N})$$
$$\omega \mapsto N^{\omega}$$

where N is the set of locally finite counting measures on $\mathbb{R}.$

Definition: Point process X on \mathbb{R}

Measurable map $N = N_X$:

$$N: (\Omega, \mathcal{A}, \mathbb{P}) \to (\mathbb{N}, \mathcal{N})$$
$$\omega \mapsto N^{\omega}$$

where N is the set of locally finite counting measures on $\mathbb{R}.$

Conditional intensity λ^* of point process X

 $\lambda^*(t)dt$ is the conditional probability that there will be a point of X between t and t + dt, given the realisations of X before t:

$$\lambda^*(t)dt = \mathbb{P}(N(dt) > 0 \mid \{t_j\}, t_j < t)$$

Hawkes process on the real half-line (Hawkes, 1971)

Self-exciting point process defined by its conditional intensity function:

$$\lambda^*(t) = \eta(t) + \sum_{t_j < t} h(t - t_j)$$

where η , h are integrable nonnegative functions and $(t_j)_{j\in\mathbb{N}}$ are realisations of the point process.

The occurrence of any event increases temporarily the probability of further events occurring.

Hawkes process on the real half-line

With exponentially decaying intensity:

$$\lambda^*(t) = \eta + \sum_{t_j < t} \alpha e^{-\beta(t-t_j)}$$

1 The Hawkes process

- Point process
- The Hawkes process

2 Spectral representation

- The Bartlett spectrum
- The Whittle likelihood

Other approaches

- (Kirchner, 2016) Convergence of a well-defined INAR(∞) process to a Hawkes process when the binsize converges to 0.
- (Celeux, Chauveau, and Diebolt, 1995) Convergence of the Stochastic EM algorithm?

Our approach heavily inspired from (Roueff and Von Sachs, 2017): Whittle likelihood for the discrete Hawkes process.

Felix Cheysson

Whittle for Hawkes count data

Bartlett spectrum (Daley and Vere-Jones, 2003, Proposition 8.2.1)

For a second-order stationary point process N on $\mathbb R$, then

$$\operatorname{Cov}\left(N(\varphi), N(\psi)\right) = \int_{\mathbb{R}} \widetilde{\varphi}(\xi) \widetilde{\psi^*}(\xi) \Gamma(d\xi)$$

where φ and ψ are functions of rapid decay, $\psi^*(u) = \psi(-u)$, and $\tilde{\cdot}$ denotes the Fourier transform: $\widetilde{\varphi}(\xi) = \int_{\mathbb{R}} e^{i\xi u} \varphi(u) du$. The unique measure $\Gamma(\cdot)$ is called the *Bartlett spectrum* of N.

For the stationary Hawkes process N, the Bartlett spectrum admits a density given by (Daley and Vere-Jones, 2003, Example 8.2(e))

$$\gamma(\xi) = \frac{m}{2\pi} |1 - H(\xi)|^{-2}$$

with $m=\mathbb{E}\left[N(0,1]\right]=\frac{\eta}{1-\int_{\mathbb{R}}h(t)dt}$ and $H(\xi)=\int_{\mathbb{R}}e^{i\xi u}h(u)du.$

Spectral representation of the Hawkes process

For the stationary Hawkes process $\{X_t\}_{t\in\mathbb{R}} = \{N(t\Delta,(t+1)\Delta)\}_{t\in\mathbb{R}}$, its spectral density is given by

$$\widehat{\gamma}(\xi) = m \Delta \operatorname{sinc}^2\left(\frac{\xi}{2}\right) \left| 1 - H\left(\frac{\xi}{\Delta}\right) \right|^{-2}$$

The Whittle likelihood (Whittle, 1953)

$$\widehat{\theta}_n = \operatorname*{arg\,min}_{\theta \in \Theta, \Theta \text{ compact}} \mathcal{L}_w(\theta)$$

where

$$\mathcal{L}_w(\theta) = \sum_{\omega \in \Omega} \log \widehat{\gamma}(\omega, \theta) + \frac{I_n(\omega)}{\widehat{\gamma}(\omega, \theta)},$$

 $I_n(\omega)$ is the periodogram of (X_k) and $\Omega = \left(\frac{2k\pi}{n}\right)_{0 \le k < n}$.

Theorem (Dzhaparidze, 1986)

Given $\alpha\text{-mixing}$ conditions on $(X_k),$ $\widehat{\theta}_n$ is consistent and asymptotically normal.

Computationally efficient : $\mathcal{O}(n \log n)$ for the periodogram, then $\mathcal{O}(n)$ for each iteration.

Simulation for the Whittle estimator

 $\eta=1,\ h(t)=1e^{-2t}$ on (0,T) | true values in red

Felix Cheysson

Application to a Measles dataset¹

- Estimated excitation function: $\hat{h}(t-t_j) = 0.76 e^{-0.86(t-t_j)}$
- Estimated duration of contagion: $(0.86)^{-1} = 1.16$ weeks = 8.14 days

Communicability (Centers for Disease Control and Prevention, 2015)

4 days before to 4 days after rash onset.

¹Weekly incidence of measles in a French department (Santé publique France)

Felix Cheysson

Whittle for Hawkes count data

Perspectives: Extending to non-stationary Hawkes process

Locally stationary Hawkes (Roueff, Sachs, and Sansonnet, 2016)

Given smoothness conditions on $\eta^{<\!LS\!>}$ and $h^{<\!LS\!>}(\cdot;\cdot)$,

$$N_T(\cdot - Tu) \xrightarrow{\mathcal{D}} N(\cdot; u)$$

where $N(\cdot; u)$ is the stationary Hawkes process at location u.

\$?

Whittle estimator for non stationary time series (Dahlhaus, 1997)

If $X_{t,T}$ has a locally stationary spectral representation (+ conditions)

$$X_{t,T} = \mu\left(\frac{t}{T}\right) + \int_{-\pi}^{\pi} \exp(i\lambda t) A_{t,T}^{0}(\lambda) d\xi(\lambda),$$

the Whittle estimator $\widehat{ heta}_T$ is consistent and asymptotically normal.

Celeux, Gilles, Didier Chauveau, and Jean Diebolt (1995). On Stochastic Versions of the EM Algorithm. Research Report RR-2514. INRIA.
Centers for Disease Control and Prevention (2015). Epidemiology and Prevention of Vaccine-Preventable Diseases. Ed. by Jennifer Hamborsky, Andrew Kroger, and Charles (Skip) Wolfe. 13th ed. Washington D.C.: Public Health Foundation.

Dahlhaus, R. (1997). "Fitting time series models to nonstationary processes". In: *Ann. Stat.* 25.1, pp. 1–37. ISSN: 00905364. DOI: 10.1214/aos/1034276620.

Daley, D J and D Vere-Jones (2003). An Introduction to the Theory of Point Processes. Vol. I. Probability and its Applications. New York: Springer-Verlag, pp. xviii+573. ISBN: 0-387-95541-0. DOI: 10.1007/b97277. arXiv: arXiv:1011.1669v3.

- Dassios, Angelos and Hongbiao Zhao (2013). "Exact simulation of Hawkes process with exponentially decaying intensity". In: *Electronic Communications in Probability* 18.62, pp. 1–13. ISSN: 1083-589X. DOI: 10.1214/ECP.v18-2717.
- Dzhaparidze, K. (1986). Parameter Estimation and Hypothesis Testing in Spectral Analysis of Stationary Time Series. ISBN: 978-1-4612-9325-5. DOI: 10.1007/978-1-4612-4842-2. URL:

http://link.springer.com/10.1007/978-1-4612-4842-2.

- Hawkes, Alan G (1971). "Spectra of Some Self-Exciting and Mutually Exciting Point Processes". In: *Biometrika* 58.1, p. 83. ISSN: 00063444. DOI: 10.2307/2334319.
- Kirchner, Matthias (2016). "Hawkes and INAR(∞) processes". In: Stochastic Processes and their Applications 126.8, pp. 2494–2525. ISSN: 03044149. DOI: 10.1016/j.spa.2016.02.008. arXiv: arXiv:1509.02007v1.

Meyer, Sebastian, Johannes Elias, and Michael Höhle (2012). "A Space-Time Conditional Intensity Model for Invasive Meningococcal Disease Occurrence". In: *Biometrics* 68.2, pp. 607–616. ISSN: 0006341X. DOI: 10.1111/j.1541-0420.2011.01684.x. arXiv: 1508.05740.
Møller, Jesper and Jakob G. Rasmussen (2005). "Perfect Simulation of Hawkes Processes". In: *Advances in Applied Probability* 37.3,

pp. 629–646.

- Ogata, Y. (1981). "On Lewis' simulation method for point processes". In: IEEE Transactions on Information Theory 27.1, pp. 23–31. ISSN: 0018-9448. DOI: 10.1109/TIT.1981.1056305.
- Roueff, F. and R. Von Sachs (Apr. 2017). "Time-frequency analysis of locally stationary Hawkes processes". In: *ArXiv e-prints*. arXiv: 1704.01437 [math.ST].

Roueff, François, Rainer von Sachs, and Laure Sansonnet (2016). "Locally stationary Hawkes processes". In: Stoch. Process. their Appl. 126.6, pp. 1710–1743. ISSN: 03044149. DOI: 10.1016/j.spa.2015.12.003. URL: https:

//linkinghub.elsevier.com/retrieve/pii/S0304414915003075. Whittle, P. (1953). "Estimation and information in stationary time series". In: Arkiv för Matematik 2.5, pp. 423-434. ISSN: 18712487. DOI: 10.1007/BF02590998.

Basic reproduction number

Mean number of infections caused by an individual

$$r = \int_0^\infty h(t) dt$$

= α/eta for exponentially decaying intensity

Spectral representation of the discrete Hawkes process

Given a discrete sample $\{X_k\}_{k\in\mathbb{Z}} = \{N(k\Delta, (k+1)\Delta)\}_{k\in\mathbb{Z}}$ with a sampling step of 1, its spectral density is given by

$$\widehat{\gamma}_1(\xi) = \sum_{k \in \mathbb{Z}} \widehat{\gamma}(\xi + 2k\pi)$$

Simulation for the Whittle estimator

Felix Cheysson

Simulate Hawkes in R (Ogata, 1981)

sim <- hawkes(T=10, lambda=1, alpha=1, beta=2)
plot(sim)</pre>

Simulate Hawkes with inhomogeneous background intensity in *R* (Møller and Rasmussen, 2005; Dassios and Zhao, 2013)

int <- function(t) exp(.5*cos(2*pi*t/5)+.3*sin(2*pi*t/5))
sim <- twinstim(T=10, fun=int, M=2, alpha=1, beta=2)
plot(sim\$immigrants)
plot(sim)</pre>

We consider four examples of time series $x_1, x_2, \ldots, x_{128}$. How would you describe them?

Spectral analysis describes x_t 's by comparing them to sines and cosines.

Sines and cosines?

The functions \sin and \cos are $2\pi\text{-periodic:}$ for $u\in\mathbb{R}$ and $k\in\mathbb{Z}$, $\cos(u+2k\pi)=\cos(u)$

Let
$$u = 2\pi \frac{2}{128}t$$
 for $t = 1, 2, \dots, 128$.

 $\frac{2}{128}$ can be interpreted as 2 cycles over the time span of 128.

Felix Cheysson

Whittle for Hawkes count data

Sines and cosines?

Similarly, with $u = 2\pi \frac{7}{128}t$ for $t = 1, 2, \dots, 128$.

• $\cos(2\pi \frac{k}{n}t)$ and $\sin(2\pi \frac{k}{n}t)$ have k cycles per n time steps.

- The quantity $f = \frac{k}{n}$ is called the *frequency* of the sine or cosine.
 - It is the amount (or rather fraction) of cycles per time step.
 - If f is small (large), the sine is said to have low (high) frequency.
- The period $T = \frac{1}{f}$ is the time steps needed for a full cycle.
- The *amplitude* is the maximum range of variation and is equal to 1 for the functions sin and cos.

Felix Cheysson

Sines and cosines?

Summing up sines and cosines of different amplitudes and frequencies create time series that resemble actual data.

Goal of spectral analysis

Given a time series x_{t} , figure out its Fourier representation, *i.e.* its decomposition into sines and cosines:

$$x_t = \sum_k a_k \cos\left(2\pi \frac{k}{n}t\right) + b_k \sin\left(2\pi \frac{k}{n}t\right)$$

Actually easy to compute a_k and b_k :

$$a_k \propto \operatorname{Cov}\left\{x_t, \cos\left(2\pi \frac{k}{n}t\right)\right\}$$

 $\sigma_k^2 = a_k^2 + b_k^2$, the squared amplitude of the sine-cosine pair, highlights the importance of the frequency $\frac{k}{n}$ in the decomposition of x_t .

- $(\sigma_k^2)_{k=1,\dots,n}$ is called the *spectrum* of the time series x_t .
- If σ_k^2 is large, there are strong patterns of frequency $\frac{k}{n}$.
- The sample spectrum, noted I_k , is called the *periodogram* of x_t .

Decomposition of variance

Since the sines and cosines of different frequencies are uncorrelated, then

$$\operatorname{Var} x_t = \sum_k (a_k^2 + b_k^2) = \sum_k \sigma_k^2$$

The spectrum (σ_k^2) is the decomposition of the variance of the time series x_t into its different frequencies $\frac{k}{n}$.

Examples

Recall the four examples: here are their periodograms.

Spectral density

For a second-order stationary process x_t with absolute summable autocovariance $\gamma(h),$ then

$$\gamma(h) = \frac{1}{2\pi} \int_{-\frac{1}{2}}^{\frac{1}{2}} e^{-2\pi i\xi h} f(\xi) d\xi$$

where f is called the *spectral density* of x_t .

The spectral density f is the continuous equivalent of the spectrum (σ_k^2) and is the *Fourier transform* of $\gamma(h)$:

$$f(\xi) = \sum_{h=-\infty}^{\infty} \gamma(h) e^{2\pi i \xi h}$$

 $X_{t,T}$ is called locally stationary with transfer function A^0 and trend μ if there exists a representation

$$X_{t,T} = \mu\left(\frac{t}{T}\right) + \int_{-\pi}^{\pi} \exp(i\lambda t) A_{t,T}^{0}(\lambda) d\xi(\lambda),$$

where

- (i) $\xi(\lambda)$ is an orthogonal-increments stochastic process with bounded cumulants, and
- (ii) there exists a continuous 2π -periodic function $A: [0,1] \times \mathbb{R} \to \mathbb{C}$ s.t.

$$\sup_{t,\lambda} \left| A_{t,T}^0(\lambda) - A\left(\frac{t}{T},\lambda\right) \right| = \mathcal{O}(T^{-1}).$$

Whittle likelihood (cont'd) (Dahlhaus, 1997)

Given a number of regularity assumptions,

$$\widehat{\theta}_n = \operatorname*{arg\,min}_{\theta \in \Theta, \Theta \text{ compact}} \mathcal{L}_w(\theta)$$

is consistent and asymptotically normal, where

$$\mathcal{L}_w(\theta) = \frac{1}{4\pi} \sum_{t=1}^T \sum_{\omega \in \Omega} \left\{ \log 4\pi^2 f_\theta\left(\frac{t}{T}, \omega\right) + \frac{\widetilde{I}_T(t/T, \omega)}{f_\theta(t/T, \omega)} \right\},\,$$

 $f_{ heta}(u,\cdot)$ is the local spectrum at location t=uT and

$$\widetilde{I}_T(u,\omega) = \frac{1}{2\pi} \sum_{k:1 \le [uT+0.5 \pm k/2 \le T]} X_{[uT+0.5+k/2]} X_{[uT+0.5-k/2]} \exp(-i\omega k)$$

is the preperiodogram of X_t , a local periodogram analog at location uT.