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Study the dynamics of contagious diseases with regards to explanatory
variables.

Attributable fraction for contagious diseases

@ Common autoregressive models cannot evaluate the repercussion of
externalities on self-excitement.

o Potentially rarely occurring events.

— Hawkes process (Meyer, Elias, and Héhle, 2012).
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Point process

Random point pattern on (R, B(R)):
X :(Q,A,P) —» (Ng,Ng)
w— Nx ={t;}

where N is the set of locally finite subset of R.
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Point process

Definition: Point process X on R

Measurable map N = Nx:

N:(Q,AP) = (N,N)
w i N¥

where N is the set of locally finite counting measures on R.

|| | IR
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Point process

Definition: Point process X on R

Measurable map N = Nx:

N:(Q,AP) = (N,N)
w i N¥

where N is the set of locally finite counting measures on R.

N(a,b]=1 N(c,d] =5
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Hawkes process

Conditional intensity A\* of point process X

A*(t)dt is the conditional probability that there will be a point of X
between ¢ and t + dt, given the realisations of X before ¢:

N (#)dt = P(N(dt) > 0 | {t;},¢; < t)

Hawkes process on the real half-line (Hawkes, 1971)

Self-exciting point process defined by its conditional intensity function:
Ne(t) =n(t) + Y h(t —t;)
t;<t
where 1), h are integrable nonnegative functions and (t;);en are realisations
of the point process.

v

The occurrence of any event increases temporarily the probability of further
events occurring.
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Hawkes process

Hawkes process on the real half-line

With exponentially decaying intensity:

A*( —77-|-Zoze (=)

t;<t

Conditionnal intensity

o
N
w
IS
o
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© Spectral representation
@ The Bartlett spectrum
@ The Whittle likelihood
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Aggregated Hawkes process

Problem: aggregate datasets

Other approaches

o (Kirchner, 2016) Convergence of a well-defined INAR(o0) process to a
Hawkes process when the binsize converges to 0.

@ (Celeux, Chauveau, and Diebolt, 1995) Convergence of the Stochastic
EM algorithm?

v

Our approach heavily inspired from (Roueff and Von Sachs, 2017): Whittle
likelihood for the discrete Hawkes process.
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Spectral representation

Bartlett spectrum (Daley and Vere-Jones, 2003, Proposition 8.2.1)

For a second-order stationary point process NV on R, then
Cov (N(p), N() = [ BOFOT(@)

where ¢ and v are functions of rapid decay, ¢¥*(u) = ¢)(—u), and ~ denotes
the Fourier transform: ¢(¢) = [, €% (u)du.
The unique measure I'(+) is called the Bartlett spectrum of N.

For the stationary Hawkes process N, the Bartlett spectrum admits a
density given by (Daley and Vere-Jones, 2003, Example 8.2(e))

1E) = o= I1 - H(E)|2

with m = E[N(0,1]] = and H (&) = [, e"“h(u)du.

n
1— [z h(t)dt
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Spectral representation of the Hawkes process

Xy Xy

tA 1A ta (t+1)n

For the stationary Hawkes process {X;}ier = {N(tA, (t + 1)A)},cp. its
spectral density is given by

7(€) = m Asinc? & 1-H £ -
2 A
n=1ht)=1e*

8

6
2,
a

2

0
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Frequency
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The Whittle likelihood (Whittle, 1953)

0, = argmin L,(0)
0€O,0 compact

where

~ In(w)
Ly(0) =) log7(w,0)+ = )
(6) % 9) V(w,0)
I, (w) is the periodogram of (X}) and Q2 = (%T”)ngn-

Theorem (Dzhaparidze, 1986)

~

Given a-mixing conditions on (X}), 6, is consistent and asymptotically
normal.

Computationally efficient : O(nlogn) for the periodogram, then O(n) for
each iteration.
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Simulation for the Whittle estimator
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Application to a Measles dataset?

count

0 A ke L . .il i 1

2006 2008 2010 2012 2014
date

2016 2018

e Estimated excitation function: ﬁ(t —t;) = 0.76 ¢~ 0-86(t=t;)
e Estimated duration of contagion: (0.86)"! = 1.16 weeks = 8.14 days

Communicability (Centers for Disease Control and Prevention, 2015)
4 days before to 4 days after rash onset.

"Weekly incidence of measles in a French department (Santé publique France)
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Perspectives: Extending to non-stationary Hawkes process

Locally stationary Hawkes (Roueff, Sachs, and Sansonnet, 2016)

Given smoothness conditions on <S> and A<L9>(.; ")

Nr(- = Tu) = N(;u)
where N(-;u) is the stationary Hawkes process at location w.

17

Whittle estimator for non stationary time series (Dahlhaus, 1997)

If X; 7 has a locally stationary spectral representation (+ conditions)

Xir=n () + [ explizg Al (e

—Tr

the Whittle estimator 67 is consistent and asymptotically normal.

v
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Hawkes process as a branching process

Conditionnal intensity

Generations

-
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Epidemiological interpretation

Basic reproduction number

Mean number of infections caused by an individual

r = /O ~ ht)dt

=a/p for exponentially decaying intensity

Generations

[
XX X X x XXX XXX XXX X % XX 06 XX

Time
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Spectral representation of the discrete Hawkes process

X i1

ko (k+1)A (k+2)A

Given a discrete sample { X} }rez = {N (KA, (k4 1)A)},c; with a
sampling step of 1, its spectral density is given by

M) =) A& + 2kn)

keZ

n =1, h(t) = 1e”* with aliasing (red)

-3n -2m -1m on 1n 2n 3n
Frequency
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Simulation for the Whittle estimator

n=1,ht)=1e*on (0,T) | true values in red
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Simulate Hawkes in R (Ogata, 1981)

sim <- hawkes(T=10, lambda=1, alpha=1, beta=2)

plot(sim)
<
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Simulate Hawkes with inhomogeneous background intensity

in R (Mgller and Rasmussen, 2005; Dassios and Zhao, 2013)

int <- function(t) exp(.5*cos(2#pi*t/5)+.3*sin(2*pi*t/5))
sim <- twinstim(T=10, fun=int, M=2, alpha=1, beta=2)
plot (sim$immigrants)

plot(sim)
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Introduction to spectral analysis

We consider four examples of time series x1,zo, ..., z198. How would you

describe them?

Wind Speed

Atomic Clock

Willamette River

Ocean Noise

100 0

Spectral analysis describes x;'s by comparing them to sines and cosines. ]
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Sines and cosines?

The functions sin and cos are 27-periodic: for u € R and k € Z,

cos(u + 2km) = cos(u)

cos(u) sin(u)
0.0 0.0
-0.5 -05
* on on an * on on an
Let u=2m3t for t =1,2,...,128.
(oract) in(2r 220
Ccos T[@ sin T[@
05 05
0.0 0.0
-0.5 -05
B 64 Bs 64 128
—2_ can be interpreted as 2 cycles over the time span of 128
128 P y P : ]
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Sines and cosines?

Similarly, with u = 2m It for t = 1,2,...,128.

7 7
L .5sin(2
05 cos(z%t) 1.5 sin( n@t)

0 64 128 0 64 128

cos(27r%t) and sin(?w%t) have k cycles per n time steps.

The quantity f = % is called the frequency of the sine or cosine.

o It is the amount (or rather fraction) of cycles per time step.
o If f is small (large), the sine is said to have low (high) frequency.

The period T = % is the time steps needed for a full cycle.

The amplitude is the maximum range of variation and is equal to 1 for
the functions sin and cos.

v
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Sines and cosines?

[
128

Summing up sines and cosines of different
amplitudes and frequencies create time series
that resemble actual data.

Goal of spectral analysis

Given a time series T, flgure out its Fourier
representation, I.e. its decomp05|t|on into
sines and cosines:

k k
By = g aj, CoS (277—15) + by, sin (27r—t)
- n n
Actually easy to compute a and by:

k
ap < Cov {xt, cos <27rt>}
n
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The spectrum and periodogram

oi = a% + b%, the squared amplitude of the sine-cosine pair, highlights the
importance of the frequency % in the decomposition of x;.

° (a,%)k:17,__7n is called the spectrum of the time series x;.
o If o is large, there are strong patterns of frequency %

@ The sample spectrum, noted Iy, is called the periodogram of x;.

Decomposition of variance

Since the sines and cosines of different frequencies are uncorrelated, then
Var:vt:Zak+62 Zak
k

The spectrum (o7) is the decomposition of the variance of the time series
x¢ into its different frequencies %
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EIES

Recall the four examples: here are their periodograms.

Wind Speed Wind Speed
Atomic Clock Atomic Clock
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Ocean Noise

Ocean Noise
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An insight into the continuous case

Spectral density

For a second-order stationary process x; with absolute summable
autocovariance y(h), then

R) = = /_ ? om2miEh f(6)dg

2 J_1
2

where f is called the spectral density of x;.

The spectral density f is the continuous equivalent of the spectrum (o7)
and is the Fourier transform of v(h):

oo

FE& = S Anermict

h=—00
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Locally stationary time series (Dahlhaus, 1997)

X1 is called locally stationary with transfer function A° and trend p if
there exists a representation

t T .
Xir=n (g )+ [ etz (v,
where

(i) £(A) is an orthogonal-increments stochastic process with bounded
cumulants, and

(i) there exists a continuous 2m-periodic function A : [0,1] x R — C s.t.

sup ‘A?’T(A) —A <,_;, /\) ’ =0(T™h).
tA
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Whittle likelihood (cont’d) (Dahlhaus, 1997)

Given a number of regularity assumptions,

0, = argmin L,(0)
0€©,0 compact

is consistent and asymptotically normal, where
1 & t Ir(t/T,w)
L (0) = - 10g47r2f9 <’w> + i VA e ’
0= 28 ot () + S
fo(u, ) is the local spectrum at location ¢t = w7 and
~ 1 .
Ir(u,w) = o Z X(ur+0.5+k/2) X [uT+0.5—k/2) €XP(—iwk)
k1< [uT+0.5+k/2<T)

is the preperiodogram of X, a local periodogram analog at location uT'.
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