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Motivation

Study the dynamics of contagious diseases with regards to explanatory

variables.

Attributable fraction for contagious diseases

Common autoregressive models cannot evaluate the repercussion of

externalities on self-excitement.

Potentially rarely occurring events.

→ Hawkes process (Meyer, Elias, and Höhle, 2012).
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Point process

De�nition: Point process X on R
Random point pattern on (R,B(R)):

X : (Ω,A,P)→ (NR,NR)

ω 7→ NX = {ti}

where NR is the set of locally �nite subset of R.
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Point process

De�nition: Point process X on R
Measurable map N = NX :

N : (Ω,A,P)→ (N,N )

ω 7→ Nω

where N is the set of locally �nite counting measures on R.
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Point process

De�nition: Point process X on R
Measurable map N = NX :

N : (Ω,A,P)→ (N,N )

ω 7→ Nω

where N is the set of locally �nite counting measures on R.

N(a, b] = 1 N(c, d] = 5

a b c d

Felix Cheysson Whittle for Hawkes count data 7th Channel Network 5 / 15



Hawkes process

Conditional intensity λ∗ of point process X

λ∗(t)dt is the conditional probability that there will be a point of X
between t and t+ dt, given the realisations of X before t:

λ∗(t)dt = P(N(dt) > 0 | {tj}, tj < t)

Hawkes process on the real half-line (Hawkes, 1971)

Self-exciting point process de�ned by its conditional intensity function:

λ∗(t) = η(t) +
∑
tj<t

h(t− tj)

where η, h are integrable nonnegative functions and (tj)j∈N are realisations

of the point process.

The occurrence of any event increases temporarily the probability of further

events occurring.
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Hawkes process

Hawkes process on the real half-line

With exponentially decaying intensity:

λ∗(t) = η +
∑
tj<t

αe−β(t−tj)
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Aggregated Hawkes process

Problem: aggregate datasets

↓

2 3 0 2 2

Other approaches

(Kirchner, 2016) Convergence of a well-de�ned INAR(∞) process to a

Hawkes process when the binsize converges to 0.

(Celeux, Chauveau, and Diebolt, 1995) Convergence of the Stochastic

EM algorithm?

Our approach heavily inspired from (Roue� and Von Sachs, 2017): Whittle

likelihood for the discrete Hawkes process.
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Spectral representation

Bartlett spectrum (Daley and Vere-Jones, 2003, Proposition 8.2.I)

For a second-order stationary point process N on R, then

Cov (N(ϕ), N(ψ)) =

∫
R
ϕ̃(ξ)ψ̃∗(ξ)Γ(dξ)

where ϕ and ψ are functions of rapid decay, ψ∗(u) = ψ(−u), and ·̃ denotes
the Fourier transform: ϕ̃(ξ) =

∫
R e

iξuϕ(u)du.
The unique measure Γ(·) is called the Bartlett spectrum of N .

For the stationary Hawkes process N , the Bartlett spectrum admits a

density given by (Daley and Vere-Jones, 2003, Example 8.2(e))

γ(ξ) =
m

2π
|1−H(ξ)|−2

with m = E [N(0, 1]] = η
1−

∫
R h(t)dt

and H(ξ) =
∫
R e

iξuh(u)du.
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Spectral representation of the Hawkes process

Xt Xt′

t∆ (t+1)∆ t′∆ (t′+1)∆

For the stationary Hawkes process {Xt}t∈R = {N(t∆, (t+ 1)∆)}t∈R, its
spectral density is given by

γ̂(ξ) = m∆ sinc2
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The Whittle likelihood (Whittle, 1953)

θ̂n = arg min
θ∈Θ,Θ compact

Lw(θ)

where

Lw(θ) =
∑
ω∈Ω

log γ̂(ω, θ) +
In(ω)

γ̂(ω, θ)
,

In(ω) is the periodogram of (Xk) and Ω =
(

2kπ
n

)
0≤k<n.

Theorem (Dzhaparidze, 1986)

Given α-mixing conditions on (Xk), θ̂n is consistent and asymptotically

normal.

Computationally e�cient : O(n log n) for the periodogram, then O(n) for
each iteration.
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Simulation for the Whittle estimator

↓
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Application to a Measles dataset1
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Estimated excitation function: ĥ(t− tj) = 0.76 e−0.86(t−tj)

Estimated duration of contagion: (0.86)−1 = 1.16 weeks = 8.14 days

Communicability (Centers for Disease Control and Prevention, 2015)

4 days before to 4 days after rash onset.

1Weekly incidence of measles in a French department (Santé publique France)
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Perspectives: Extending to non-stationary Hawkes process

Locally stationary Hawkes (Roue�, Sachs, and Sansonnet, 2016)

Given smoothness conditions on η<LS> and h<LS>(·; ·),

NT (· − Tu)
D−→ N(·;u)

where N(·;u) is the stationary Hawkes process at location u.

l ?

Whittle estimator for non stationary time series (Dahlhaus, 1997)

If Xt,T has a locally stationary spectral representation (+ conditions)

Xt,T = µ

(
t

T

)
+

∫ π

−π
exp(iλt)A0

t,T (λ)dξ(λ),

the Whittle estimator θ̂T is consistent and asymptotically normal.
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Hawkes process as a branching process
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Epidemiological interpretation

Basic reproduction number

Mean number of infections caused by an individual

r =

∫ ∞
0

h(t)dt

= α/β for exponentially decaying intensity
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Spectral representation of the discrete Hawkes process

Xk Xk+1

k∆ (k+1)∆ (k+2)∆

Given a discrete sample {Xk}k∈Z = {N(k∆, (k + 1)∆)}k∈Z with a

sampling step of 1, its spectral density is given by

γ̂1(ξ) =
∑
k∈Z

γ̂(ξ + 2kπ)
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Simulation for the Whittle estimator

Regular MLE binsize = 0.25 binsize = 0.5 binsize = 1 binsize = 2
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Simulate Hawkes in R (Ogata, 1981)

sim <- hawkes(T=10, lambda=1, alpha=1, beta=2)

plot(sim)
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Simulate Hawkes with inhomogeneous background intensity
in R (Møller and Rasmussen, 2005; Dassios and Zhao, 2013)

int <- function(t) exp(.5*cos(2*pi*t/5)+.3*sin(2*pi*t/5))

sim <- twinstim(T=10, fun=int, M=2, alpha=1, beta=2)

plot(sim$immigrants)

plot(sim)
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Introduction to spectral analysis

We consider four examples of time series x1, x2, . . . , x128. How would you

describe them?

Willamette River Ocean Noise

Wind Speed Atomic Clock
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Spectral analysis describes xt's by comparing them to sines and cosines.

Felix Cheysson Whittle for Hawkes count data 7th Channel Network 11 / 19



Sines and cosines?

The functions sin and cos are 2π-periodic: for u ∈ R and k ∈ Z,
cos(u+ 2kπ) = cos(u)

cos(u) sin(u)

0π 2π 4π 0π 2π 4π
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Let u = 2π 2
128 t for t = 1, 2, . . . , 128.
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2
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t) sin(2π
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2
128 can be interpreted as 2 cycles over the time span of 128.
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Sines and cosines?

Similarly, with u = 2π 7
128 t for t = 1, 2, . . . , 128.

0.5 cos(2π
7

128
t) 1.5 sin(2π

7

128
t)

0 64 128 0 64 128

−1

0

1

cos(2π kn t) and sin(2π kn t) have k cycles per n time steps.

The quantity f = k
n is called the frequency of the sine or cosine.

It is the amount (or rather fraction) of cycles per time step.
If f is small (large), the sine is said to have low (high) frequency.

The period T = 1
f is the time steps needed for a full cycle.

The amplitude is the maximum range of variation and is equal to 1 for

the functions sin and cos.
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Sines and cosines?

Summing up sines and cosines of di�erent

amplitudes and frequencies create time series

that resemble actual data.

Goal of spectral analysis

Given a time series xt, �gure out its Fourier
representation, i.e. its decomposition into

sines and cosines:

xt =
∑
k

ak cos

(
2π
k

n
t

)
+ bk sin

(
2π
k

n
t

)
Actually easy to compute ak and bk:

ak ∝ Cov

{
xt, cos

(
2π
k

n
t

)}
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The spectrum and periodogram

σ2
k = a2

k + b2k, the squared amplitude of the sine-cosine pair, highlights the

importance of the frequency k
n in the decomposition of xt.

(σ2
k)k=1,...,n is called the spectrum of the time series xt.

If σ2
k is large, there are strong patterns of frequency k

n .

The sample spectrum, noted Ik, is called the periodogram of xt.

Decomposition of variance

Since the sines and cosines of di�erent frequencies are uncorrelated, then

Var xt =
∑
k

(a2
k + b2k) =

∑
k

σ2
k

The spectrum (σ2
k) is the decomposition of the variance of the time series

xt into its di�erent frequencies k
n .
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Examples

Recall the four examples: here are their periodograms.
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An insight into the continuous case

Spectral density

For a second-order stationary process xt with absolute summable

autocovariance γ(h), then

γ(h) =
1

2π

∫ 1
2

− 1
2

e−2πiξhf(ξ)dξ

where f is called the spectral density of xt.

The spectral density f is the continuous equivalent of the spectrum (σ2
k)

and is the Fourier transform of γ(h):

f(ξ) =
∞∑

h=−∞
γ(h)e2πiξh
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Locally stationary time series (Dahlhaus, 1997)

Xt,T is called locally stationary with transfer function A0 and trend µ if

there exists a representation

Xt,T = µ

(
t

T

)
+

∫ π

−π
exp(iλt)A0

t,T (λ)dξ(λ),

where

(i) ξ(λ) is an orthogonal-increments stochastic process with bounded

cumulants, and

(ii) there exists a continuous 2π-periodic function A : [0, 1]× R→ C s.t.

sup
t,λ

∣∣∣∣A0
t,T (λ)−A

(
t

T
, λ

)∣∣∣∣ = O(T−1).
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Whittle likelihood (cont'd) (Dahlhaus, 1997)

Given a number of regularity assumptions,

θ̂n = arg min
θ∈Θ,Θ compact

Lw(θ)

is consistent and asymptotically normal, where

Lw(θ) =
1

4π

T∑
t=1

∑
ω∈Ω

{
log 4π2fθ

(
t

T
, ω

)
+
ĨT (t/T, ω)

fθ(t/T, ω)

}
,

fθ(u, ·) is the local spectrum at location t = uT and

ĨT (u, ω) =
1

2π

∑
k:1≤[uT+0.5±k/2≤T ]

X[uT+0.5+k/2]X[uT+0.5−k/2] exp(−iωk)

is the preperiodogram of Xt, a local periodogram analog at location uT .
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